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Abstract
We explore dynamic processes in suspensions of charge-stabilized colloidal particles and
biological macromolecules. Various short-time transport properties including diffusion
functions and the high-frequency viscosity, have been calculated by means of a recently
developed accelerated Stokesian dynamics simulation tool. This has allowed us to study dense
suspensions with many-body hydrodynamic interactions. The results of this study are used to
explore the validity of generalized Stokes–Einstein relations, and the possibility of measuring
self-diffusion at a finite scattering wavenumber. The influence of the electrolyte ion dynamics
on the colloidal long-time self-diffusion in non-dilute suspensions of small colloids is
determined using a many-component mode-coupling theory that accounts for the inter-ionic
hydrodynamic interactions. We investigate the influence of the asymmetry in the electrolyte ion
charges and mobilities on the friction experienced by the charged colloids. It is shown that these
asymmetries affect the electrolyte friction significantly, and that the electrolyte friction
contribution to self-diffusion decreases with increasing colloid concentration.

1. Introduction

The dynamics of liquid dispersions of charged colloidal
particles is of fundamental interest in soft matter science,
surface chemistry and the food industry. The scope for
these systems has been broadened even further through the
increasing importance of biophysical research dealing with
charged biomolecules like proteins and DNA. Many of the
theoretical methods and computer simulation techniques that
have been developed in colloid physics are directly applicable
to biological molecules and cells.

In exploring the dynamics of charge-stabilized colloids
theoretically, a complicated interplay of inter-particle forces
has to be considered. The colloidal macroions and the
neutralizing small counterions and co-ions (microions) interact
with each other through electrosteric and hydrodynamic
interactions. The latter type of forces, transmitted quasi-
instantaneously on colloidal time scales by the intervening

solvent molecules, is very long-ranged and in general of many-
body nature. This causes challenging problems in the theory
and computer simulation studies of the colloid dynamics.

Two major routes are followed in theoretical studies
on the dynamics of charged colloids. In the first, a
charge-stabilized suspension is modeled as an effective one-
component fluid of microion-dressed colloidal macroions,
interacting at non-overlap distances by a spherically symmetric
screened Coulomb potential. In this so-called one-component
macroion fluid model (OMF), the microions enter into the
description only through an effective screening parameter and
an effective colloid charge. The OMF model thus disregards
the non-instantaneous dynamic response of the microionic
atmosphere to the colloid motion. In the second part of
this paper, where a more refined many-component model
is used, we will show that this is a good approximation
for colloidal particles much larger than the electrolyte ions.
The simplicity of the one-component model allows for
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a quantitative consideration of the strong colloid–colloid
hydrodynamic interactions (HI), and for the study of their
effects in dense charge-stabilized suspensions.

The present paper consists of two parts. In the first
part (section 2), we present a simulation study of short-
time dynamic properties of dense suspensions on the basis
of the OMF model. Using a recently developed accelerated
Stokesian dynamics (ASD) simulation method for Brownian
spheres [1], we have calculated and analyzed a variety of short-
time dynamic properties such as translational and rotational
self-diffusion coefficients, wavenumber-dependent diffusion
functions, and the high-frequency-limiting viscosity. The
ASD simulation method accounts both for many-body HI and
lubrication effects. The results of our simulation study are used
to scrutinize the validity of short-time generalized Stokes–
Einstein (GSE) relations linking the high-frequency viscosity
to diffusion properties, and to explore the possibility of
measuring the self-diffusion coefficient in a dynamic scattering
experiment at a specifically selected wavenumber.

The second route to describe the dynamics of charged
colloidal particles relies on a more refined multi-component
description, the so-called dynamic Primitive model, in
which the colloidal particles, surface-released counterions
and electrolyte ions are treated alike as charged hard
spheres interacting via excluded volume, electrostatic and
hydrodynamic forces. Just like in the OMF model, the solvent
is treated as a structureless hydrodynamic continuum, and
the time evolution of all ionic species is determined by a
many-component Smoluchowski equation. While the multi-
component model allows, in principle, the consideration of
electrolyte ion kinetic effects on the colloid diffusion and
rheology arising from their finite response times, it is far
more costly to deal with than the OMF model, particularly in
computer simulations. Moreover, additional approximations
must be introduced in theoretical calculations.

Section 3 includes the second part of the paper, where
we use the dynamic Primitive model as the starting point in
the study of the dynamic influence of salt ions on the long-
time self-diffusion of small colloidal particles or biomolecules
in a non-dilute suspension. Our calculation of the colloidal
long-time self-diffusion coefficient in this model is based on
a simplified many-component mode-coupling scheme which
requires the inter-ionic static pair correlation functions as
the only input. This scheme is a marked improvement on
previous methods, since it includes the far-field HI between
all ionic species and allows the study of electrokinetic effects
in colloidal suspension at non-zero colloid concentrations [2].
We explore in particular the influence of asymmetry in the
electrolyte ion charges and mobilities on the long-time self-
friction experienced by the charged colloids. It is shown that
these asymmetries have a significant effect on the electrolyte
friction.

2. Colloidal short-time dynamics

2.1. One-component macroion model

Our computer simulation study of short-time dynamic
properties in dense suspensions of charge-stabilized colloidal

spheres and the analytic theory calculations discussed in
this paper, are based on the one-component macroion fluid
model. The colloidal spheres with their clouds of neutralizing
microions are described in this simplifying model as uniformly
charged hard spheres interacting by the effective pair potential
of Derjaguin–Landau–Verwey–Overbeek (DLVO) type [3]

u(r)

kBT
= LB Z 2

(
eκa

1 + κa

)2 e−κr

r
, r > 2a. (1)

Here, the electrostatic screening parameter, κ , is given by

κ2 = 4π LB [n|Z | + 2ns]

1 − φ
= κ2

ci + κ2
s , (2)

where n is the colloid number density, ns is the number density
of added 1-1 electrolyte, and φ = (4π/3)na3 is the colloid
volume fraction of spheres with radius a. Furthermore, Z
is the charge on a colloid sphere in units of the elementary
charge e, and LB = e2/(εkBT ) is the Bjerrum length of the
suspending fluid of dielectric constant ε at temperature T . The
solvent is characterized solely by its dielectric constant ε and
the shear viscosity η0. The square of the screening parameter
has a contribution, κ2

ci, due to surface-released counterions,
which are assumed here to be monovalent, and a contribution,
κ2

s , arising from the added electrolyte. The factor 1/(1 − φ)

corrects for the free volume accessible to the microions [4].
For strongly charged spheres with LB|Z |/a > 1, Z should

be interpreted as an effective charge number smaller than the
bare one, owing to the quasi-condensation of counterions close
to the colloid surfaces. Likewise, a renormalized value for κ

should be used. Several schemes have been developed to relate
the effective Z and κ to the bare ones [5–8]. The outcome of
these schemes depends on the approximation made for the free
energy functional, and on additional simplifications used such
as the spherical cell or macroion jellium models.

We do not embark here on the ongoing discussion of how
the effective charge and screening parameters are related to
their bare counterparts, and on how one can generalize the
charge-renormalization concept to dynamic phenomena. We
only mention here that an interesting relationship between
charge-renormalization and long-time self-diffusion of DNA
fragments is to be discussed in a forthcoming article [9].

In the present simulation study, the OMF model is used
as a well-established model that captures essential features of
charge-stabilized suspensions. It allows us to explore general
trends in the short-time dynamics of charged dispersions in an
affordable amount of computation time. Our focus will be on
hydrodynamic interaction effects.

2.2. Short-time dynamic properties

In colloid dynamics, one distinguishes the short-time regime,
τB � t � τI, from the long-time regime characterized by
t � τI [10, 11]. The interaction time τI can be estimated
by a2/D0, where D0 = kBT/(6πη0a) is the translational
diffusion coefficient of a single sphere suspended in a fluid of
viscosity η0. It characterizes the time span required for direct
particle interactions to become influential. The relaxation
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time of the colloid momenta is denoted by τB. At long
times t � τI, the motion of particles is diffusive due to the
incessant bombardment by solvent molecules and interactions
with other surrounding particles. Within the colloidal short-
time regime addressed in the present section, the configuration
of particles has changed so little that the slowing influence
of the direct interactions is not yet operative. However, the
short-time dynamics is influenced by the solvent mediated
hydrodynamic interactions which, in the case of colloids, act
quasi-instantaneously. In unconfined suspensions of mobile
particles, the HI are long-range and, in general, non-pairwise
additive. The HI strongly affect the diffusion and rheology
in dense suspensions, and they can give rise to unexpected
dynamic effects.

Long-time diffusion properties are always smaller than
the corresponding short-time ones, since dynamic caging by
neighboring particles becomes operative at longer times only,
where it has a slowing influence on the particle diffusion.
Short-time properties, on the other hand, are not subject to
dynamic caging. Therefore, they can be expressed in terms
of equilibrium averages, in which direct interactions appear
only indirectly through their influence on the equilibrium
microstructure.

Short-time dynamics properties can be probed experimen-
tally by a variety of scattering techniques. For example photon
correlation spectroscopy probes the dynamic structure factor,
S(q, t) as a function of scattering wavenumber q and correla-
tion time t . For short correlation times where τB � t � τI,
S(q, t) decays exponentially according to [10, 11]

S(q, t)

S(q)
≈ exp

[−q2D(q) t
]
, (3)

with a q-dependent short-time diffusion function, D(q), that
can be expressed by the ratio

D(q) = D0
H (q)

S(q)
, (4)

of the hydrodynamic function H (q), and the static structure
factor S(q) = S(q, t = 0). The microscopic expression for
H (q) is given by [11]

H (q) =
〈

kBT

N D0

N∑
l, j=1

q̂ ·μ(rN )l j · q̂ exp{iq · [rl − r j ]}
〉

,

(5)
where N is the number of spheres in the scattering volume,
r j (t) is the position vector of sphere j at time t , q̂ is the
unit vector in the direction of the scattering wavevector q,
and the brackets represent an equilibrium ensemble average.
Furthermore, μ(rN )l j is the translational hydrodynamic
mobility tensor that relates the hydrodynamic force on a sphere
j to the resulting velocity change of sphere l. It depends
in general on the configuration, rN , of all N particles which
makes an analytic calculation of H (q) intractable, unless
approximations can be introduced.

The function H (q) contains the influence of the HI on the
short-time diffusion. It is the sum of a q-independent self-part,
and a q-dependent distinct part, H (q) = Ds/D0 + Hd(q),

where Ds is the short-time translational self-diffusion
coefficient proportional to the initial slope of the particle mean-
squared displacement. At wavenumbers large compared to the
position, qm, of the principal peak in S(q), H (q) becomes
equal to Ds/D0. In the opposite limit of very small q , H (q)

is equal to the short-time sedimentation velocity, Us, of a
slowly settling homogeneous suspension taken relative to the
sedimentation velocity, U0, at infinite dilution. Without HI,
H (q) is identically equal to one so that any q-dependence
signals the influence of HI.

For qa � 1, D(q) reduces to the short-time collective
diffusion coefficient, Dc, which for strongly charged particles
at low salinity is substantially larger than the free diffusion
coefficient D0. In the large-q limit, D(q � qm) ≈ Ds. Note
that Ds is smaller than D0 at non-zero colloid concentrations.

Additional short-time properties explored in our simula-
tion study are the short-time rotational self-diffusion coeffi-
cient, Dr, which is the rotational analog of Ds, and the high-
frequency-limiting suspension viscosity η∞. The short-time
viscosity η∞ is measured in low-amplitude shear oscillation
rheometers at frequencies ωτI � 1 high enough so that the
equilibrium microstructure is unaffected by the imposed shear
flow.

Very recently [12], we have reported on a comprehensive
simulation study on the short-time dynamics of charged
colloidal spheres described in the OCM model. In the
following, an extension of this study will be presented with
additional new results.

2.3. Simulation and theory

We have calculated a variety of short-time dynamic properties
using the accelerated Stokesian dynamics (ASD) simulation
code developed by Banchio and Brady [1]. We have extended
this code to charged spheres described by the OMF pair
potential. The ASD code allows us to simulate short-time
properties for a larger number of colloidal spheres, typically up
to one thousand placed in a periodically replicated simulation
box, which gives improved statistics. The details of the
ASD simulation method, which accounts for many-body HI
and lubrication effects, have been given in [1]. To speed
up the computation of short-time quantities such as H (q), a
set of equilibrium configurations has been generated using a
Monte Carlo simulation code in the case of charge-stabilized
spheres, and a molecular dynamics simulation code for neutral
hard spheres. Finite-size effects arising from the periodic
boundary conditions have been corrected for using a finite-
size scaling procedure introduced by Ladd and co-workers
in earlier Lattice–Boltzmann simulations of colloidal hard
spheres [13–15].

The only analytic method available to date that allows
the prediction of H (q), Ds and η∞ of dense suspensions
of neutral and charge-stabilized spheres is the (zeroth-
order) renormalized density fluctuation expansion method
of Beenakker and Mazur [16, 17]. This so-called δγ

method is based on a partial resummation of many-body
HI contributions, and it invokes truncated hydrodynamic
mobility tensors. To leading order in the renormalized density
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Figure 1. Static structure factor S(q), short-time diffusion function
D(q) and hydrodynamic function H(q) of hard-sphere suspensions
at volume fractions φ as indicated. The dynamic properties are
scaled by the respective short-time self-diffusion coefficient Ds(φ).
To a good approximation, there is an isobestic point at qsa ≈ 4.02,
where S(q) and H(q) × (D0/Ds) are equal to 1 (see the vertical
line). Our ASD simulation data are denoted by symbols.

fluctuations, the hydrodynamic function in this scheme is
obtained from [16, 18–20]

Hd(q) = 3

2π

∫ ∞

0
d(ak)

(
sin(ak)

ak

)2 [
1 + φSγ0 (ak)

]−1

×
∫ 1

−1
dx

(
1 − x2

)
[S(|q − k|) − 1] (6)

and

Ds(φ)

D0
= 2

π

∫ ∞

0
dt

(
sin t

t

)2 [
1 + φSγ0(t)

]−1
. (7)

Here, x is the cosine of the angle extended by the wavevectors
q and k, and Sγ0(t) is a known function independent of the
particle correlations and given in [16, 18]. The only input is
the static structure factor S(q), which we have calculated here
using the rescaled mean spherical (RMSA) integral equation
scheme. Actually, S(q) is input to the distinct part of H (q)

only, whereas the expression for Ds is independent of S(q).
In the application of the zeroth-order δγ scheme to charge-
stabilized spheres, Ds is thus more roughly approximated by
the value for neutral hard spheres at the same volume density φ,
independent of the particle charge and the screening parameter.
To account for the actual pair correlations in calculating Ds

requires one to go one step further in the fluctuating density
expansion, which severely complicates the scheme. However,
from comparing the δγ scheme predictions with our ASD
simulation results and a large collection of experimental data
on charge-stabilized systems, we have found that Hd(q) is
well described by equation (6). This allows the improvement
of the δγ scheme by replacing the hard-sphere δγ prediction

Figure 2. The same as in figure 1 but for deionized suspensions of
charged spheres at volume fractions as indicated. In the present
systems, there are no isobestic points. The vertical dashed lines mark
the wavenumbers, qs, where S(qs) = 1.

for Ds by the accurate simulation value which is a less time-
consuming method than the full ASD simulation of H (q). The
hybrid method amounts to an upward shift of the δγ − H (q)

by a small to moderately large value, since the Ds of charged
spheres is larger than that of neutral ones [11, 21]. Even
without the correction for Ds, the δγ scheme is useful in
detecting trends in the behavior of H (q).

In the following, we discuss our ASD simulation results
for a collection of short-time dynamic properties. The system
parameters used are ε = 10, T = 298.15 K, sphere radius
a = 100 nm, ns = 0 in general, and a colloid charge number
Z = 100 corresponding to LB|Z |/a = 5.62. It will be noted
in the captions when different parameters have been used.
The present parameters are representative of suspensions of
strongly charged colloidal spheres.

2.4. Hydrodynamic and short-time diffusion functions

We start by discussing the general behavior of the
hydrodynamic function H (q), the short-time self-diffusion
function D(q), normalized by the short-time self-diffusion
coefficient Ds(φ), and the static structure factor S(q).
The ASD simulation results for neutral hard spheres, and
charge-stabilized spheres at zero added salt, are depicted in
figures 1, 2, respectively, for volume fractions φ as indicated.
It should be noted that H (q) → Ds/D0 and D(q) → Ds

for large values of q . The undulations of H (q) and D(q)

in q are in phase with those of S(q). In particular, the
maximum (minimum) of H (q) (D(q)) is located right at the
peak position, qm, of S(q). For hard spheres, where near-
field HI is dominant, H (qm) decreases linearly in φ, according
to H (qm) = 1 − 1.35φ, for concentrations extending up
to the freezing transition [12]. In contrast to this, in salt-
free suspensions of strongly charged spheres, H (qm) increases
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sublinearly in φ at small concentrations, characterized by
an exponent of about 0.4. This slow increase arises from
the dominance of the far-field HI part in systems where the
particles stay apart from each other because of long-range
electrostatic repulsions. With increasing φ, however, the
slowing influence of near-field HI comes into play so that
H (qm) passes through a maximum [23]. In the systems of
figure 2, this maximum is reached at φ ≈ 0.06.

The slowest decay of density fluctuations of wavelength
2π/q , as quantified by the minimum D(qm) in D(q), is found
for the wavelength 2π/qm that characterizes the size of a
next-neighbor cage. This cage stiffens with increasing φ.
Therefore, the cage diffusion coefficient D(qm) decreases with
increasing concentration by a rate that increases with particle
charge (see figure 3). The strong sensitivity of D(qm) on
interaction parameters such as the particle charge is due to
its explicit dependence on the inverse of S(qm). In charged-
sphere suspensions at low salinity, S(qm; φ) increases initially
very strongly with φ, since only few counterions are available
to screen the electrostatic repulsion. This, in turn, causes the
sharp drop in D(qm) at very small φ, as can be seen in the
figure.

When an increasing amount of salt is added, both H (qm)

and H (q � qm) = Ds/D0 decline towards their hard-sphere
limiting values. Opposite to this, the sedimentation coefficient,
H (0), increases with increasing salinity. This reflects the
experimentally confirmed observation that charged particles at
low salinity settle more slowly than uncharged ones [12, 24].
Without exception, both the ASD simulations and the analytic
δγ theory are in accordance with the general ordering relations,

H CS(qm) > H HS(qm)

DCS
s > DHS

s

U CS
s < U HS

s ,

(8)

where CS and HS are the labels, respectively, for charged
and neutral hard spheres. For systems with added salt, the
values of these short-time properties are located in between
the zero-salt and infinite-salt (zero-charge) limits. Whereas
the majority of experimentally available scattering data on
charge-stabilized suspensions is in agreement with the ordering
relations in equations (8) [22, 23], a violation of these
relations has been purportedly observed in certain scattering
experiments [25, 26].

Colloidal hard spheres have a common static and
hydrodynamic length scale given by the particle radius a. This
is the reason for the approximate existence of an isobestic
wavenumber qa ≈ 4.02 observed to the right of the main
structure factor peak, where both S(q) and H (q) × D0/Ds,
and hence also D(q)/Ds, are equal to one, independent of the
volume fraction (see figure 1). In fact, the wavenumber where
S(q) passes through 1 at φ = 0.185 is slightly smaller but
approaches 4.02/a with increasing φ.

Unlike hard spheres, deionized suspensions of strongly
charged spheres have at least two characteristic length scales,
namely the geometric mean particle distance, n−1/3, and the
hydrodynamic radius a. Consequently, in these systems there

Figure 3. Cage diffusion coefficient of an aqueous deionized
suspension versus volume fraction for various colloid charge
numbers Z as indicated. The system parameters are a = 25 nm,
T = 298 K, LB = 0.70 nm and ns = 0. The curves shown are
obtained using the δγ scheme with a RMSA structure factor input.
Note the steep decline of D(qm) for very small φ. The inset shows
the same data plotted on a logarithmic volume fraction scale.

is no isobestic point for S(q) and H (q). The non-existence
of a concentration-independent isobestic point in deionized
suspensions is exemplified in figure 1.

It has been suggested by Pusey [27] that self-diffusion can
be probed in a dynamic light scattering experiment performed
at a wavenumber qs > qm, where S(qs) = 1. The assumption
made here is that at such a wavenumber, where the distinct
static structure factor, Sd(q) = S(q) − 1, is zero, also its
time-dependent generalization, Sd(qs, t) = S(qs, t)−G(qs, t),
should remain small, in comparison to the self-intermediate
scattering function, G(qs, t), that describes colloidal self-
diffusion [10]. Note here that G(q, 0) = 1 for all values of
q . If this assumption holds true at least on an approximate
level, then it is found indeed that Ds ≈ D0 H (qs) = D(qs).
For all systems explored in our extensive ASD study, we find
the difference between Ds/D0 and H (qs) to be less than ten
per cent both for neutral and charged spheres (cf, figure 4).
Thus dynamic light scattering experiments at such a point qs

where S(qs) = 1, can be used to obtain a decent estimate for
the value of Ds.

2.5. High-frequency viscosity

We proceed to discuss the concentration dependence of the
high-shear limiting viscosity η∞, in the linear-response regime
where shear-thinning remains absent. A lot of experimental
and simulation data have been accumulated in the past for
the η∞ of colloidal hard spheres [13, 28, 29]. Comparatively
few investigations have been made on low-salt suspensions
of charged particles [30, 31]. In figure 5, we display the
ASD simulation results for two different deionized systems
with system parameters as listed in the caption. These results
for charged spheres should be compared with the ASD data
for neutral hard spheres. As can be noticed, the viscosity

5
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Figure 4. ASD simulation test on the validity of
D(qs) = H(qs) ≈ Ds for neutral hard spheres (HS) and deionized
charged-sphere suspensions (CS).

difference between charged and neutral particles is quite small
even at larger φ. The fact that η∞(CS) < η∞(HS) at all
φ reflects the smaller hydrodynamic dissipation in charged-
spheres systems due to the depletion of neighboring spheres
near contact caused by the electrostatic repulsion. Figure 6
shows that the increase in viscosity due to the increased
electrostatic screening triggered by the addition of salt is very
weak. This weak ionic strength dependence of η∞, and its
only modest increase with increasing volume fraction predicted
by the ASD simulations, are features fully consistent with the
experimental findings of Bergenholtz et al [30].

Our ASD simulation data for hard spheres are well
described by

η∞
η0

= 1 + 1.5 φ (1 + S(φ))

1 − φ (1 + S(φ))
, (9)

with S(φ) = φ + φ2 − 2.3φ3. This formula was used initially
by Ladd to fit his simulation data, obtained for densities up to
φ = 0.45 using a hydrodynamic force multipoles method [13].
However, it applies to even larger volume fractions since it

Figure 5. High-frequency limiting viscosity, η∞, of two deionized
suspensions of charged spheres (circles: Z = 100, a = 100 nm,
LB = 5.62 nm, ns = 0; diamonds: Z = 70, a = 25 nm, LB = 0.71
nm, ns = 0), and of neutral hard spheres, versus φ. Displayed are our
ASD simulation data in comparison with the hard-sphere simulation
fit formula of Ladd in equation (9), and the expression in
equation (11) for deionized suspensions that derives from a
schematic model of the pair distribution function.

Figure 6. ASD simulation results (circles) on the salt-dependence of
the high-frequency limiting viscosity for a charge-stabilized
suspension with φ = 0.15.

conforms also with our ASD simulation data, and the ones of
Sierou and Brady [29], which have been obtained for densities
up to φ ≈ 0.6. Note that equation (9) reduces to the exact
Einstein limiting law to linear order in φ, however it does not
account for the divergence of η∞ at random closed packing
where φrcp ≈ 0.64.

The short-time viscosity in dilute suspensions of strongly
repelling spheres with prevailing two-body HI can be

6
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computed from [32]

η∞
η0

= 1 + 5

2
φ (1 + φ) + 15

2
φ2

∫ ∞

2
dxx2g(x)J (x), (10)

where the function J (x) accounts for two-body HI. The
(5/2)φ2 contribution arises from regularizing the integral,
which is a summation over induced hydrodynamic force
dipoles. The integral involving the radial distribution function,
g(x), is at most of order one. In dilute deionized systems, one
can approximate the integral using a schematic model for g(x).
This leads to the result (see [12] for its derivation)

η∞
η0

≈ 1 + 5

2
φ (1 + φ) + 7.9φ3, (11)

which includes a correction term 7.9φ3 that describes the
viscosity contribution arising from binary particle correlations.
It is of cubic order since in deionized systems the peak position
of the radial distribution function scales like φ−1/3 [12]. We
can see in figure 5 that this expression conforms rather well
with the ASD data on deionized suspensions.

Equation (11) applies to deionized suspensions. Therefore
it should be distinguished from the regular virial expansion of
η∞ existing for colloidal hard spheres. The latter is given by

η∞/η0 = 1 + 2.5 φ + 5.0023 φ2 + 9.09 φ3 + O(φ4). (12)

The third-order virial coefficient, 9.09, which stems from
the triplet correlations, has been derived only very recently
in [33]. The fourth and higher-order coefficients are not
known analytically to date. The third-order virial result for
hard spheres is applicable only for φ � 0.3. At larger φ,
the increase in η∞ is underestimated. The hard-sphere virial
result in equation (12), and the zero-salt prediction for charged
spheres in equation (11), are depicted as horizontal bars for the
system in figure 6.

Even though in the present section we are concerned
with short-time properties only, a few remarks are in order
here regarding the long-time (static) viscosity η = η∞ +
�η. For strongly correlated particles, η can be substantially
larger than its short-time part, since the viscosity contribution
�η coming from shear-flow-induced, non-instantaneous stress
relaxations is dominant [1, 34]. At equal concentration, the
�η of charged spheres is larger, since charged spheres resist
more strongly a flow-induced distortion of their microstructure.
Even though a calculation of long-time properties such as η has
become feasible for charged spheres using the ASD simulation
technique, it will be exceedingly more time-consuming than
a short-time calculation. Therefore, we will leave long-time
simulations of charge-stabilized spheres to a future study.

2.6. Generalized Stokes–Einstein relations

There is considerable interest in identifying generalized
Stokes–Einstein relations between diffusion and viscoelastic
properties, since these are fundamental to microrheological
experiments with their widespread applications to biological
systems. Provided a proposed GSE relation is valid, a
rheological experiment can be performed more easily, and for
smaller samples, using scattering techniques.

Figure 7. ASD simulation test of the generalized SE relations in
equations (13)–(15) for the hard-sphere case. Symbols: ASD
simulation data for D(qm)/D0, Ds/D0, Dr/Dr

0 and η0/η∞ as
indicated in the legend.

Out of various GSE proposals, we will explore the
following three short-time relations [30, 34–36]

Ds(φ) = kBT

6πη∞(φ)a
(13)

Dr(φ) = kBT

8πη∞(φ)a3
(14)

D(qm; φ) = kBT

6πη∞(φ)a
. (15)

These expressions relate the high-frequency limiting viscosity
to Ds, Dr, and to the short-time cage diffusion function D(qm),
respectively. In the following, we will expose these relations to
a stringent test using the ASD simulation technique.

For hard spheres, the φ-dependence of Ds/D0, Dr/D0 and
η0/η∞ is shown in figure 7. It is noted there that the second
GSE relation considered here, equivalent to Dr/Dr

0 = η0/η∞,
that involves the short-time rotational diffusion coefficient Dr

with infinite dilution value Dr
0 = kBT/(8πη0a3), is strongly

violated for non-zero concentrations. The GSE relation for
Ds, on the other hand, is less strongly violated, but the
inequality Ds/D0 > η0/η∞ or, likewise, Ds > kBT/(6πη0a)

is obeyed for all non-zero concentrations. This corresponds
to a monotonic and essentially linear increase of (η∞/η0) ×
(Ds/D0) in φ, described up to φ = 0.5 approximately by the
form 1 + 0.67φ.

Using standard Stokesian dynamics and ASD simulations,
Brady and co-workers have determined the η∞, Ds and the
static viscosity η of hard spheres for densities even above
the freezing point, on assuming that the dispersion can be
maintained in a non-crystalline, disordered and metastable
state up to random close packing. Their data for Dr and
η∞ are not included in figure 7 since, in the liquid phase
regime considered here, they fully agree with our simulation
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Figure 8. The same as in figure 7, but for a deionized suspension of
charged spheres.

results. For values φ > 0.6, where random closed packing
is approached, Sierou and Brady [29] observe a linear scaling
of Ds(φ) as function of the inverse high-frequency viscosity,
which gives evidence that Ds ∝ 1/η∞ in the limit φ → φrcp.
Thus, their simulations suggest that Ds vanishes at φrcp in a
manner inversely proportional to η∞. For volume fractions
below freezing, however, the physical mechanisms of self-
diffusion and viscosity are clearly distinguishable from each
other, and the GSE relation for Ds is violated to some extent, as
noted in figure 7 and quantified by Ds(φ)/D0 ≈ (1+0.67φ)×
η0/η∞(φ).

For hard spheres, the GSE relation involving D(qm) is
satisfied overall to a remarkably good degree of accuracy.
Interestingly enough, and opposite to neutral spheres, the GSE
relation for the D(qm) of charged spheres at zero salinity is
the most strongly violated one (see figure 8), whereas the
GSE relation for Ds still works reasonably well. This reflects
the point raised earlier in our discussion of figure 3, that
different from η∞ and Ds, D(qm) is highly sensitive to system
parameters such as the particle charge and ionic strength,
through its explicit dependence on S(qm). Note here again
the sharp drop in D(qm) at very small φ which reflects a
correspondingly sharp increase in S(qm).

As can be noted from figure 8, the relation for Dr in
charge-stabilized systems is violated to a lesser extent than
in the neutral-sphere case. We argue that the GSE relation
involving Dr is poorer than the one for Ds, owing to the shorter
range of the hydrodynamic mobility tensor associated with
rotational self-diffusion. We point out that, according to the
ASD data, the ordering relation Ds > kBT/(6πη∞a) is valid
both for deionized suspensions and neutral hard spheres, in
agreement with experiments of Bergenholtz et al, where η∞
and Ds have been measured for various ionic strengths and
concentrations [30].

For the deionized suspensions in figure 8 one might try
to relate the short-time transport coefficients to an effective
volume fraction defined, say, as φeff = φ × (1 + 1/κa)3

corresponding to the effective particle radius a + κ−1, with
κ given in equation (2). However, the electric double layers
in deionized suspensions are so extended that the so defined
φeff can attain unphysically large values due to the nonlinear φ-
dependence of κ at low salinity. The form of φeff(φ) is strongly
dependent on system parameters, in particular on the residual
microionic concentration due to the self-dissociation of solvent
(water) molecules. Assuming zero self-dissociation would
result even in a non-monotonic φ-dependence of φeff where
two bare volume fractions are mapped on a single effective one.
These considerations illustrate that the concept of an effective
volume fraction is not useful in describing the diffusion, and
the microstructure (see [11]), of strongly repelling charged
particles with thick double layers.

The deviations from the short-time GSE relations can
be intuitively rationalized by introducing apparent slip-stick
parameters, ν, defined by

D = kBT

6πη0a
(
1 + νs,c�η

)

Dr = kBT

8πη0a3 (1 + νr�η)
,

(16)

with �η = η∞/η0 − 1 and D used as an abbreviation for Ds

and D(qm). Here, νs, νr and νc are the slip-stick parameters
for translational and rotational self-diffusion, and for cage
diffusion, respectively. The parameters are determined from

νs,c,r (φ) = D(φ = 0)/D(φ) − 1

η∞(φ)/η0 − 1
, (17)

with D = Ds, D(qm) and Dr, respectively. The friction term
in the denominator of equation (16) has been split into a part
due to the solvent alone, which sticks to the surface of the large
colloidal spheres, and an additional frictional part originating
from the direct and hydrodynamic interactions between the
spheres. Since the spheres are all of equal size, there is
no reason to expect a stick boundary condition to be valid
for the interaction frictional part, which would correspond to
ν = 1. The description of the host suspension surrounding a
colloidal probe sphere as a continuous medium without local
inhomogeneities, characterized by η∞, is strictly valid only
when the probe sphere is much larger than the host spheres.
In fact, for a colloidal tracer sphere of radius a immersed in
a host suspension of neutral spheres of radius aH, the slip-
stick parameters of the tracer increase from 0 for a/aH → 0
(i.e., zero excess friction) up to the value 1 for a/aH → ∞,
in accord with the expectation that the GSE relations become
exactly valid only in the continuum limit of the host dispersion
(cf, [35, 36]).

In figures 9(a) and (b), we show the slip-stick parameters
for hard spheres and deionized charged spheres, respectively,
as obtained from the ASD data in figures 7, 8 using
equation (17). The average slip-stick parameter νs for hard
spheres is close to 2/3 (dashed line). The excess frictional
part due to interactions is thus well described for hard spheres
by the perfect slip form 4π(η∞ − η0)a. For rotational self-
diffusion, νr ≈ 0.20 (dashed line), i.e., the interaction friction
is less pronounced in the case of rotational self-diffusion so

8
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Figure 9. Apparent slip-stick coefficients νs, νr and νc characterizing the interaction friction contribution to the translational and rotational
self-diffusion, and the cage diffusion coefficient, respectively. Shown are ASD results for (a) hard spheres, and (b) a deionized suspension of
charged spheres. The dashed lines in (a) mark the volume fraction averaged values 〈νs〉 ≈ 2/3 and 〈νr〉 = 0.20, respectively.

that Dr/Dr
0 > Ds/D0. The parameter νc characterizing cage

diffusion is close to 1 in the case of hard spheres for all
values of φ. For deionized suspensions of charged spheres,
however, super-stick values of νc are observed throughout that
are substantially larger than 1 for all concentrations considered.
This is reflected in D(qm)/D0 < η0/η∞ (see figure 8)
and indicates, for the cage diffusion of charged spheres at
low salinity, the failure of the continuum picture for the
equally-sized host suspension. According to equation (17)
the parameters νr,s for charged particles at very small φ,
where Ds ≈ D0, Dr ≈ Dr

0 and η∞ ≈ η0, are very
sensitive to statistical errors in the ASD data. Therefore,
in figure 9(b) these values have not been included. Note
further that the strong deviations of the slip-stick parameters of
charged spheres from 1 become smaller for increasing values
of φ.

In summary, a major conclusion of our simulation study
is that the approximate validity of (short-time) GSE relations
depends in general strongly on the range of the pair potential.
Finally, we mention that a test of corresponding long-time GSE
relations has been made in [34], on the basis of an idealized
mode-coupling approximation, with HI accounted for in an
ad hoc fashion using a short-time hydrodynamic rescaling
prescription, applicable unfortunately to neutral hard spheres
only. A long-time simulation analysis of the dynamics of
charge-stabilized colloidal spheres with a full account of the
HI remains as a major challenge to a future study.

3. Electrokinetic effects on colloidal long-time
diffusion

The electrolyte friction effect is an additional friction
experienced by diffusing charged colloidal particles. This
friction results from the relaxation of the electric double layer
around a diffusing colloidal particle, as a non-instantaneous
response to any disturbance in the spherical symmetry of the

double layer. It causes a reduction in the long-time self-
diffusion coefficient, DL, of a charged colloidal sphere. This
coefficient quantifies the long-time slope of the colloidal mean-
squared displacement. To correctly describe this dynamic
friction effect, one must take account of the colloidal Brownian
motion, the presence of further colloidal spheres, the dynamics
of the various species of electrolyte ions (microions) and
the hydrodynamic interactions between all aforementioned
particles. A versatile method for calculating the long-time self-
diffusion coefficient of repulsive charged colloidal spheres,
based on the Primitive model where all ionic species are
treated equally and individually as uniformly charged hard
spheres immersed in a structureless solvent, and the many-
body Smoluchowski diffusion equation, has been developed in
a couple of papers by the present authors [2, 37]. This method
invokes a simplified mode-coupling scheme for mixtures of
Brownian spheres [38–41], and it accounts for the long-
distance part of the HI between all ionic species in the
form of the so-called Rotne–Prager approximation [42]. The
detailed derivation of this method, and a thorough discussion
of the approximations involved in its derivation, has been
given elsewhere [2, 37] and will not be repeated here. To
our knowledge, this is the first statistical mechanical scheme
describing the dynamic electrolyte influence on the long-time
self-diffusion of charged colloids in non-dilute suspensions
with an account of the inter-ionic HI.

Different from the solvent, which is described as a
structureless continuum, the hydrated microions are treated
here as separate bodies since these are somewhat larger and
heavier than the water molecules giving rise to a larger
relaxation time of the ionic momenta [43]. In addition,
the microions are coupled through their electric charge
to the much slower motion of the colloidal macroions.
Using the Smoluchowski equation describing overdamped
Brownian motion also for the microions is an approximation,
in particular when considering very short times in the
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sub-picosecond range where the inertia of the microions
matters. In this ultra-short time range, a generalized Fokker–
Planck description accounting for the ion momenta would be
more appropriate. However, we are interested here in the
(long-time) dynamics of colloidal macroions which takes place
on time scales that are many orders of magnitude larger, and
which is influenced by the microions through their cooperative
motion only. Treating the electrolyte ions as individual
particles allows one to account for microionic correlation and
finite-size effects on the colloid dynamics, which can be of
importance for strongly charged and very small colloids.

According to our scheme, the long-time self-diffusion
coefficient of charge-stabilized colloidal spheres at non-zero
colloid concentration n is given by the Stokes–Einstein-like
relation [2],

DL

D0
=

[
1 + �ζ EF

ζ 0
+ �ζ CF

ζ 0

]−1

, (18)

that includes, in addition to the single-sphere solvent friction
part, ζ 0 = kBT/D0, an electrolyte friction (EF) and
a colloid friction (CF) contribution. The colloid friction
contribution arises from the microion-averaged electrosteric
and hydrodynamic interactions between the colloidal particles.
Different from section 2, we use here superscripts to label the
single-sphere diffusion coefficient, D0, of a single colloidal
sphere and the long-time self-diffusion coefficient, DL, of
interacting spheres. The subscript i is used in the following
to label the various microionic species.

3.1. Electrolyte and colloid friction

In [2], an expression has been derived for the electrolyte
friction contribution, in which the ionic species have equal
mobilities. In the present work, our scheme for calculating
DL is extended to electrolyte ion species of unequal mobilities
and valencies. If the microionic species have unequal free
mobilities which are, however, much larger that the free
mobility of the colloidal spheres, the expression for the
electrolyte friction contribution derived in [2] is generalized
to

�ζ EF

ζ 0
= 2

3π2

m∑
i=1

ni
D0

D0 + D0
i

×
∫ ∞

0
dk k2

{
S(k)hd

ci(k) − hci(k)H (k)

S(k) + H (k)

}2

, (19)

where the D0
i are the free diffusion coefficients of the

electrolyte ion species i ∈ {1, . . . , m} of number density ni ,
S(k) and H (k) are the static structure factor and hydrodynamic
function of the colloid species, and hci(k) and hd

ci(k) are
the partial total correlation and partial distinct hydrodynamic
functions between the colloidal spheres and the electrolyte
ion of species i , respectively. It is interesting to note in
this expression that the electrolyte friction contribution from
each of the m microionic species are decoupled, and that
the hydrodynamic interactions between the microionic species
does not appear. In fact, this expression is an approximation
applicable to the case when δi = D0/(D0 + D0

i ) is small

for all i . The higher-order terms in the expansion in the δi

do include the microion–microion hydrodynamic interactions,
but since these prefactors are small in colloidal systems, they
are ignorable.

In the limiting case that the colloidal species is infinitely
dilute, S(k) and H (k) become both equal to 1, so that
equation (19) reduces to

�ζ EF

ζ 0
= 1

6π2

m∑
i=1

ni
D0

D0 + D0
i

∫ ∞

0
dk k2

{
hci(k)−hd

ci(k)
}2

.

(20)
Note here that the Rotne–Prager form of the colloid–microion
HI is exact in the case of a single forced colloidal sphere
in a suspension of pointlike microions. For zero colloid
concentration, �ζ CF = 0, and the electrolyte friction is the
only additional non-solvent source of friction on the colloids in
the long-time regime. Using the mean spherical approximation
(MSA) for the colloid–microion correlation functions, so that
hci = hHS

c + zi hE L
c and hd

ci = hdHS
c + zi hdEL

c , the electrolyte
friction expression further simplifies to

�ζ EF

ζ 0
= κ2 − κ2

m

24π3LB

∫ ∞

0
dk k2

{
hE L

c (k) − hdEL
c (k)

}2
(21)

where κ2
m = 4π LB

∑m
i=1 ni

D0
i

D0+D0
i
z2

i and κ2 = 4π LB(∑m
i=1 ni z2

i + n|Z |), with Z denoting the valency of a
colloidal sphere and n the colloid concentration (n = 0 in
equations (20) and (21)).

There is no contribution to the electrolyte friction from
excluded volume interactions between the colloidal sphere and
the electrolyte ions because the flow field created by a single
colloidal sphere advects point particles along the streamlines
of the colloid [2]. Equation (21) is reminiscent of the Onsager
limiting law for dilute electrolytes (without colloids) which
states that the additional friction on an electrolyte ion of charge
number z due to the other ones is [44]

�ζ EF

ζ 0
= LBz2

3
[κ − κm] . (22)

In the case that the colloidal sphere is uncharged, there is no
additional friction from the electrolyte ions, since the friction
in equation (21) is proportional to the square of the colloid
charge. There is a residual friction, however, when considering
a dense colloidal suspension since then the flow field around
a neutral colloidal spheres is affected by the presence of the
other colloids, and the flow no longer simply advects the small
pointlike ions. However, this residual electrolyte friction is
very small and results only from excluded volume interactions,
so that it would be present even when both the colloids and the
electrolyte particles are uncharged.

We note here that the colloid friction contribution, which
arises from the static and hydrodynamic interactions among the
colloids themselves, is given in our scheme by [2]

�ζ CF

ζ 0
= 1

6π2n

∫ ∞

0
dk k2 [S(k) − H (k)]2

[S(k) + H (k)]
. (23)

Although there is no dynamic influence of the electrolyte ions
on the colloid friction, this friction contribution is indirectly
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Figure 10. Long-time colloidal self-diffusion coefficient, DL, of the
simplifying spherical DNA fragment model, as a function of added
monovalent salt concentration. The solid lines include the electrolyte
friction contribution, the dashed lines contain only the colloid
friction contribution.

influenced through static colloid–microion and microion–
microion correlations that describe the static screening of the
bare Coulomb interactions between the colloids.

3.2. Charge- and mobility asymmetric electrolytes

In the following, we quantify the effect on the electrolyte
friction originating from an asymmetry between the electrolyte
ions. This asymmetry can be either in the form of a charge
or mobility asymmetry. The example system discussed here
is a simplifying colloid model of short 20 base-pair-long DNA
oligomers in aqueous dispersion [45]. We treat these biological
particles as spheres of radius a = 3.4 nm, and charge number
Z = −42. Due to the small size of the biological particles, the
electrolyte friction will make a rather large contribution. The
electrolyte ions and surface-released counterions are treated
as pointlike, and the static inter-ionic correlation functions
required as input to our scheme, are calculated using the
analytic MSA solution for the Primitive model. The MSA
accounts for the excluded volume of the colloids and preserves
the exact zeroth and second-order moments conditions of local
charge neutrality and charge oscillations valid in equilibrium.

Taking the solvent to be water at 20 ◦C corresponding
to a Bjerrum length LB = 0.71 nm, and the average radius
of monovalent microions to be approximately 2.5 Å, we
have that the free diffusion coefficients of the microions and
the colloids are D0± = 1.0 × 10−9 m2 s−1 and D0 =
0.6 × 10−10 m2 s−1 respectively. Moreover, we assume for
simplicity that the counterions dissociated from the DNA
surfaces (surface-released counterions) are of the same species
as the counterions of the dissociated added salt.

In figure 10, we show the calculated long-time diffusion
coefficient, DL, of our DNA fragment model as a function
of added salt concentration, ns, for a series of DNA volume
fractions as indicated. The solid lines arise from including
both the colloid and electrolyte friction contributions, and the
dashed lines from including only the colloid friction. The

Figure 11. Electrolyte friction contribution for the spherical DNA
fragment model, with a = 3.4 nm and Z = −42, as a function of
added monovalent salt concentration, with all microions of equal
mobility.

effect of electrolyte friction is seen to be most important at low
volume fractions. It is essentially non-visible at higher volume
fractions.

The minimum in the diffusion constant for φ = 0 is
due to electrolyte friction alone and occurs at intermediate
salt concentrations where κ−1 is of the order of the sphere
radius. It is due basically to the colloid–microion HI. As
shown in [2] for macroions with fixed surface electric potential,
ignoring this dynamic interaction in model calculations may
result in unphysical predictions. A similar minimum in
the salt-dependence of the translational DL is found both
experimentally and theoretically also for rodlike charged
particles [46, 47], and charged semi-flexible polymers such as
double-stranded DNA fragments [48].

Figure 11 displays explicitly the colloidal electrolyte
friction contribution due to added monovalent salt ions (1:1
electrolyte) of equal mobilities. The electrolyte friction has
a maximum at intermediate salt concentrations due to the
interplay between the relaxation of the microions in the
electric double layer and the extent of the double layer as
quantified by the screening length κ−1. The electrolyte friction
reduces with added colloid concentration due to the increase
in the electrolyte background concentration, which lowers
the distortion of the electric double layers in relation to the
background electrolyte concentration. It is because of this that
the long-time self-diffusion in dense systems can be accounted
for almost entirely through the colloidal friction contribution
�ζ CF.

In figure 12, the electrolyte friction contribution is shown
for the two cases when either the counter-or co-ions of a 1:1
electrolyte have twice the mobility of the opposing microions.
Again the same overall trends in the electrolyte friction can
be seen in these results, i.e., that the electrolyte friction has
a peak at intermediate added salt concentrations and that
it reduces significantly with increased colloid concentration.
However, the effect of increasing the mobility of one of the
electrolyte ion species is to decrease the electrolyte friction
overall due to the decrease in the relaxation time of the electric
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Figure 12. Reduced electrolyte friction contribution for the spherical
DNA fragment model, with a = 3.4 nm and Z = −42, as a function
of added monovalent salt concentration, with differing microionic
free mobilities as indicated by the differing colors. Three sets of data
are considered for φ = 0 (solid lines), 10−3 (dashed lines) and 10−2

(dotted lines), in order from largest to lowest.

double layer. Furthermore, at zero colloid concentration, there
is no difference in whether the counter-or co-ions have the
larger mobility since the surface-released (positive valued)
counterions are also at zero concentration and therefore make
no contribution to the friction. Indeed, in the two cases
considered, that is counter-or co-ions with doubled mobility,
there is no difference in the electrolyte friction even for non-
zero colloid concentration when the added salt ions dominate
over the surface-released counterions. When the surface-
released counterions dominate (low-salt regime) then there is
a difference in the electrolyte friction. This is due to the fact
that in this case there are very few co-ions as compared to the
counterions, so that it is unimportant what mobility they have.

It is important to note that when the mobility of microions
is increased, only the electrolyte friction is affected due to
the decrease in the microionic relaxation time. The colloid
friction described by equation (23), however, is unaffected by
the mobilities of the electrolyte ions.

In figure 13, the electrolyte friction contribution is shown
for the two cases when the counter- or co-ions are divalent,
i.e., we consider here the electrolyte friction of DNA ‘spheres’
in a z+:z− = 2:1 and 1:2 electrolyte solution in comparison
to a 1:1 electrolyte system, in dependence on the number
concentration, ns, of salt ion pairs. Interestingly enough, the
magnitude of the electrolyte friction peak is unaffected by the
valency change in the electrolyte ions, however its location
is shifted to lower added salt concentration. This behavior
can be attributed to the fact that the extension of the electric
double layer around a DNA ‘sphere’ is reduced when the
charge of the electrolyte ions is increased for a fixed ns. This
is more easily seen in figure 14 where the electrolyte friction
contribution is plotted against the ionic strength of the added
salt, Is = ∑2

i=1 ni z2
i with n1 = nsz+ and n2 = ns|z−|,

measured in mol l−1. In this plot, the peaks in the electrolyte
friction coincide for all three electrolyte solutions considered.

At zero DNA concentration (φ = 0), it does not matter
which microion species is of higher charge. At very low-

Figure 13. Electrolyte friction contribution for the spherical DNA
fragment model, with a = 3.4 nm and Z = −42, as a function of
added salt concentration, with differently charged electrolyte ions as
indicated by the differing colors. There are three sets of data for
φ = 0, 10−3 and 10−2, in order from largest to lowest.

Figure 14. The same as in figure 13, but plotted versus ionic
strength Is.

salt concentration and non-zero φ, however, when the surface-
released counterions dominate, an enlarged valency of the
counterions does cause a higher electrolyte friction. This can
be ascribed to the fact that in this case the electric double
layer has twice the extension of a corresponding system with
monovalent counterions.

Finally, in figure 15, we show the long-time self-diffusion
coefficient of DNA fragments in a 2:1 electrolyte solution. This
should be compared to figure 10 showing the DL for a 1:1
electrolyte. There is overall only a small difference in the
DL of the two cases owing to the dominance of the colloid
friction contribution. However, the increase in DL, i.e., the
decrease in the total friction, that occurs with increasing salt
concentration, appears at lower salt concentrations for a 2 : 1
electrolyte solution due to increased screening caused by the
divalent electrolyte ions.

4. Summary

In the first part of this paper, we have presented numerous
simulation results for short-time dynamic properties of charge-
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Figure 15. Long-time self-diffusion coefficient of the spherical DNA
fragment model as a function of added 2:1 salt concentration with
divalent counterions. The solid lines include the electrolyte friction
contribution, dashed lines contain only the colloid friction
contribution.

stabilized suspensions including self-diffusion coefficients,
hydrodynamic function and high-frequency-limiting viscosity.
The calculations have been made using an extension of
the ASD simulation method to the OMF model of charged
colloidal spheres.

The range of validity and the accuracy of various short-
time GSE relations have been examined. The assessment of
the quality of these relations is a necessary prerequisite for the
experimentalist interested in their use for data interpretation,
for instance in the context of microrheological experiments.
Our simulation results have shown that rotational self-diffusion
and, to a lesser extent, translational self-diffusion is faster than
predicted by the corresponding GSE relations. We have found
that the amount by which a GSE relation is violated depends
sensitively on the range of the electrostatic repulsion. A case
in point is the GSE relation for the cage diffusion coefficient
which applies reasonably well to neutral hard spheres, but
is strongly violated in the case of deionized suspensions.
The general trends in the concentration and salt-dependence
of η∞ (and Ds), predicted by our ASD simulations, are in
agreement with the experimental findings on charge-stabilized
dispersions.

The ASD simulation study of isobestic points and,
more specifically, the calculation of diffusion properties at
wavenumbers where S(q) = 1, has allowed us to quantify
the experimental error made in determining Ds through
dynamic light scattering measurements at such points. In
our simulations, the error is less than ten percent. This
finding is of relevance to scattering experiments on numerous
colloidal systems where the large-q regime is not accessible
experimentally, and where partial index matching techniques
can not be applied.

In the second part of the paper, the multi-component
Primitive model model has been used to explore the dynamic
influence of salt ions on the colloidal long-time self-diffusion
in non-dilute suspensions. For this purpose, we have developed
a simplified mode-coupling scheme that accounts for the far-
field part of the HI between all ionic species, and treats the

colloid and electrolyte friction contributions to DL on equal
footing. A very convenient, but approximate feature of the
mode-coupling scheme is that dynamic transport properties
are expressed in terms of static pair correlation functions
for which a variety of well-documented solution schemes
exist. Microionic correlation effects like quasi-condensation of
counterions and overcharging enter into the dynamics through
these static correlation functions.

In the present calculations, the microions have been
considered as pointlike in comparison to the size of the
colloidal particles, but they are characterized by finite values
of the free diffusion constants. In an earlier study on the
electrolyte friction effect on a single colloidal sphere [37], we
have found that the finite size of the microions is insignificant
for colloid–microion size ratios typically larger than 5, and
we expect that this holds true also in non-dilute suspensions
provided the concentration of salt ions is not large and the
colloids are not very strongly charged.

We have shown that the electrolyte friction contribution
to DL becomes insignificant when the mobility difference
between the colloidal spheres and the microions is large,
and when the concentration in the suspension increases.
The second finding is attributed to the enhanced overall
homogenization of the electrolyte background with increasing
φ. We have extended our mode-coupling scheme to electrolyte
ion species of differing mobilities and valencies. This
extension has been used to study the effects of doubling or
halving the mobility or charge of one of the two microionic
species. It has been shown that these asymmetries can
influence the electrolyte friction significantly, and that their
effect changes in going from the counterion to the salt-
dominated regime.

Finally, we note that substantial progress has been made
very recently in developing computer simulation and numerical
schemes that allow the calculation of the electrokinetic
transport properties of charge-stabilized colloids at non-zero
concentrations with an account of many-body hydrodynamic
effects. In the so-called fluid particle dynamics (FPD)
method of Tanaka and Araki [49, 50], and in the related
smoothed profile method (SPM) of Kim, Nakayama and
Yamamoto [51, 52], the solvent and the microions are treated
on a coarse-grained level as continuous fields, akin to standard
electrokinetic theory. Only the colloids are treated explicitly
as particles. The solid colloidal macroions are modeled in
the FPD method as undeformable fluid particles of viscosity
much higher than the viscosity of the surrounding solvent.
In contrast, in the SPM method the sharp boundary between
colloids and fluid is replaced by a diffuse interface of
finite thickness. In both methods, the particles act on the
solvent through continuous body forces in the Navier–Stokes
equation rather than through moving boundary conditions.
This simplification results in numerically efficient solution
schemes which are formulated in simple Cartesian coordinates.
Therefore both methods are suitable to simulate dense colloid
dispersions. The SPM method has the advantage that larger
time increments can be selected since the particles are treated
as solids rather than high-viscous fluid droplets [52]. Since
the microions in both methods are described in a mean-field
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way by a continuous charge distribution, local charge ordering
effects beyond the Poisson–Boltzmann (PB) level are not
considered.

Lobaskin, Dünweg et al [53, 54] have developed a
hybrid simulation method where the microions are considered
explicitly. To approximate the fluid stick boundary conditions,
a tethered network of small particles is wrapped around
the surface of a spherical colloidal macroion (raspberry-like
structure). The small particles on the colloid surface and
the spherical microions are dissipatively coupled through a
friction term to a lattice Boltzmann background describing
the hydrodynamics of a structureless solvent. The colloid
particle and the finite-sized microions are propagated using a
molecular dynamics algorithm with Langevin thermal noise.
This simulation method goes beyond the more mesoscopic
FDP and SPM schemes in that it accounts for the discrete
nature of the microions, thus including correlations beyond the
PB level. This is achieved at the price of a larger numerical
effort. The simulation method is restricted to a limited range
of macroion-counterion size ratios. Due to the more costly
numerics, only a single macroion with its cloud of microions in
a box with periodic boundary conditions has been considered
so far, with finite colloid concentration effects accounted for
simply by adjusting the box to colloid size ratio to the given
volume fraction.

To date the numerical methods described above have been
applied mainly to colloidal electrophoresis. In principle, they
can also be used to describe the electrolyte friction effect.
In future studies it will be interesting to explore how these
methods compare with each other, and with the semi-analytical
mode-coupling scheme discussed in this paper.
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[37] McPhie M G and Nägele G 2004 J. Phys.: Condens. Matter

16 S4021
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